Page 11234..1020..»

The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in The Villages, Florida

February 26th, 2015 by vshcbomv No comments »

The Villages, Florida (PRWEB) February 25, 2015

The Miami Stem Cell Treatment Center announces a series of free public seminars on the use of adult stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief and Dr. Nia Smyrniotis, Medical Director.

The seminars will be held on Tuesday March 3, 2015, at 1:00pm, 3:00pm, 5:00pm and 7:00pm at the Holiday Inn Express and Suites The Villages, 1205 Avenida Central, The Villages, FL 32159. There will be a Social Hour with the Doctors after the 7:00pm session. Please RSVP at (561) 331-2999, all events are by reservation only.

The Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; The Villages), along with sister affiliates, the Irvine Stem Cell Treatment Center (Irvine; Westlake Villages, California) and the Manhattan Regenerative Medicine Medical Group (Manhattan, New York), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the bodys natural healing cells – they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Miami Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used; and No bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and degenerative orthopedic joint conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Miami Stem Cell Treatment Center, they may contact Dr. Gionis or Dr. Smyrniotis directly at (561) 331-2999, or see a complete list of the Centers study areas at: http://www.MiamiStemCellsUSA.com.

About the Miami Stem Cell Treatment Center: The Miami Stem Cell Treatment Center, along with sister affiliates, the Irvine Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Miami, Boca Raton, Orlando and The Villages, Florida. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.MiamiStemCellsUSA.com, http://www.IrvineStemCellsUSA.com , or http://www.NYStemCellsUSA.com.

See original here:
The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in The Villages, Florida

Stem cell therapy a boon to Parkinson's patients

February 26th, 2015 by Iningichlit No comments »

Bengaluru:Feb 27, 2015, DHNS

Two courses of stem cell therapy have helped Ashok Kumar, 59, who suffered from tremors and rigidity due to Parkinsons disease, recover completely, much to the joy of his family. The man was brought inside my cabin in a wheelchair. He was unable to even sit on the chair without support. Today, he walks independently. Stem cell therapy has made it possible for him, said Dr Naseem Sadiq, Director, Plexus Neuro and Stem Cell Research Centre, who began treating Kumar in October, last year.

Previously, medication and surgical procedure were the only treatment option for Parkinsons disease. Medication in the long-term often lacks effectiveness and may cause side effects, while surgery is not always feasible. Lately, stem cell therapy has turned out to be a boon for patients with Parkinsons, Dr Sadiq said.

Kumar is among the few who have benefited from stem cell therapy. However, though the State has been reporting an increase in the number of registered stem cell donors, it is far behind sufficient as the genetic match between donor and recipient could be anywhere between one in 10,000 and one in two million, according to experts.

Speaking to Deccan Herald, Raghu Rajgopal, co-founder, Datri, a registry for stem cell donation, said, The response we get from Karnataka when we conduct stem cell camps is great. We see a lot of people and registering with us.

As many as 6,000 people have registered from the State under the Datri registry. A total of 72,000 people have registered across the country. In Kerala, 11,000 have signed up, the highest so far, he said.

Among the common myths are that by donating stem cells one turns infertile and weak, have increased chances of cancer and also that there would be excess loss of blood, he said.

According to studies, over one lakh people are diagnosed with Leukemia (blood cancer) and other blood disorders every year in India. The Indian Council of Medical Research has predicted that by the end of 2015, Leukemia cases will reach an estimated 1,17,649 and 1,32,574 by 2020. Stem cell therapy is a widely used treatment mechanism for Leukemia.

Go to Top

View post:
Stem cell therapy a boon to Parkinson's patients

Stem cell therapy a boon for Parkinson patients

February 26th, 2015 by Ticicellweeby No comments »

Bengaluru, Feb 25, 2015, dhns:

Two courses of stem cell therapy have helped Ashok Kumar, 59, who suffered from tremors and rigidity due to Parkinsons disease, recover completely, much to the joy of his family.

The man was brought inside my cabin in a wheelchair. He was unable to even sit on the chair without support. Today, he walks independently. Stem cell therapy has made it possible for him, said Dr Naseem Sadiq, Director, Plexus Neuro and Stem Cell Research Centre, who began treating Kumar in October, last year.

Previously, medication and surgical procedure were the only treatment option for Parkinsons disease. Medication in the long-term often lacks effectiveness and may cause side effects, while surgery is not always feasible. Lately, stem cell therapy has turned out to be a boon for patients with Parkinsons, Dr Sadiq said.

Kumar is among the few who have benefited from stem cell therapy. However, though the State has been reporting an increase in the number of registered stem cell donors, it is far behind sufficient as the genetic match between donor and recipient could be anywhere between one in 10,000 and one in two million, according to experts.

Speaking to Deccan Herald, Raghu Rajgopal, co-founder, Datri, a registry for stem cell donation, said, The response we get from Karnataka when we conduct stem cell camps is great. We see a lot of people and registering with us.

As many as 6,000 people have registered from the State under the Datri registry. A total of 72,000 people have registered across the country. In Kerala, 11,000 have signed up, the highest so far, he said.

Among the common myths are that by donating stem cells one turns infertile and weak, have increased chances of cancer and also that there would be excess loss of blood, he said.

According to studies, over one lakh people are diagnosed with Leukemia (blood cancer) and other blood disorders every year in India.

The Indian Council of Medical Research has predicted that by the end of 2015, Leukemia cases will reach an estimated 1,17,649 and 1,32,574 by 2020. Stem cell therapy is a widely used treatment mechanism for Leukemia.

Here is the original post:
Stem cell therapy a boon for Parkinson patients

New Commentary from Asymmetrex LLC Director Anticipates Forthcoming E-Book on Stem Cell Genetic Fidelity

February 25th, 2015 by qSVDMbwTn No comments »

Boston, MA (PRWEB) February 25, 2015

Anyone familiar with the founding principles of Asymmetrex, LLC will appreciate the new editorial from its director and the collection of authors he assembled as Associate Editor for the Frontiers Research Topic, titled Stem Cell Genetic Fidelity. Both the introductory editorial and the individual articles are currently available online, ahead of issue in the form of the Frontiers e-book later this year.

Central to the stem cell mechanisms investigated and reviewed by the nine articles is the still controversial proposal of immortal strands in adult tissue stem cells. Based on the experimental observations of K. Gordon Lark in the 1960s, John Cairns predicted the existence of immortal strands of the DNA genetic material about a decade later.

In studies with cultured mouse tissues and plant root tips, Lark had noted that when some cells divided, they seemed to violate well-established genetic laws. These were the Mendelian laws of inheritance, name after Gregor Mendel, who laid their foundation. Each of the 46 human chromosomes has two complementary strands of DNA. One DNA strand is older than the other, because it was used as the template for copying the other. As a result of this inherent age difference in chromosome DNA strands, when the two DNA strands are split to make two new chromosomes before cell division to produce two new cells one chromosome in each of the 46 pairs of new chromosomes has the oldest DNA strand.

Mendels laws maintain that each new sister cell should randomly get a similar number of chromosomes with the oldest DNA strands. But Cairns hypothesized that adult tissue stem cells had a mechanism to ignore Mendels laws. Instead, one of the two cells produced by an asymmetric stem cell division retained all, and only, the chromosomes with the oldest DNA strands. Cairns called these immortal strands. By continuously retaining the same complete set of oldest template DNA strands, Cairns envisioned that tissue stem cells could significantly reduce their rate of accumulation of carcinogenic mutations, which primarily occur by chance when DNA is being copied.

Cairns presented his concept of immortal strands in tissue stem cells in a 1975 report to account for a large discrepancy that he had noted between human cancer rates and human cell mutation rates. He estimated that human cancer rates, though still undesirable, fell far short of expectations based on generally known rates of human cell mutation.

Whereas some scientists continue to view Cairns immortal strand hypothesis as folly, others consider it genius. In the last decade, progress in evidence for immortal strands in stem cells of diverse animal tissues and animal species accelerated greatly. However, little progress has occurred in defining their role in normal tissue stem cells or diseases like cancer.

In his new editorial, Sherley reveals that he is firmly in the camp that views the immortal strand hypothesis as genius. Before founding Asymmetrex, as a laboratory head in two different independent research institutes Fox Chase Cancer Center and Boston Biomedical Research Institute and at the Massachusetts Institute of Technology he developed new tools and approaches for investigating immortal strand functions, which are now a focus for commercial development in the new company. Immortal strands and cellular factors associated with them have significant potential to provide specific biomarkers for tissue stem cells. There is a significant unmet need for such invaluable tools in stem cell research, drug development, and regenerative medicine.

About Asymmetrex (http://asymmetrex.com/)

Asymmetrex, LLC is a Massachusetts life sciences company with a focus on developing technologies to advance stem cell medicine. Asymmetrexs founder and director, James L. Sherley, M.D., Ph.D. is an internationally recognized expert on the unique properties of adult tissue stem cells. The companys patent portfolio contains biotechnologies that solve the two main technical problems production and quantification that have stood in the way of successful commercialization of human adult tissue stem cells for regenerative medicine and drug development. In addition, the portfolio includes novel technologies for isolating cancer stem cells and producing induced pluripotent stem cells for disease research purposes. Currently, Asymmetrexs focus is employing its technological advantages to develop facile methods for monitoring adult stem cell number and function in clinically important human tissues.

Excerpt from:
New Commentary from Asymmetrex LLC Director Anticipates Forthcoming E-Book on Stem Cell Genetic Fidelity

New study shows safer methods for stem cell culturing

February 25th, 2015 by ignipligh No comments »

1 hour ago

A new study led by researchers at The Scripps Research Institute (TSRI) and the University of California (UC), San Diego School of Medicine shows that certain stem cell culture methods are associated with increased DNA mutations. The study points researchers toward safer and more robust methods of growing stem cells to treat disease and injury.

“This is about quality control; we’re making sure these cells are safe and effective,” said Jeanne Loring, a professor of developmental neurobiology at TSRI and senior author of the study with Louise Laurent, assistant professor at UC San Diego.

Laurent added, “The processes used to maintain and expand stem cell cultures for cell replacement therapies needs to be improved, and the resulting cells carefully tested before use.”

The findings were published February 25 in the open-access journal PLOS ONE.

Growing Stem Cells

Because these human stem cells, called “pluripotent stem cells,” can differentiate into many types of cells, they could be key to reversing degenerative diseases, such as Parkinson’s disease, or repairing injured tissue, such as cardiac muscle after a heart attack. Stem cells are relatively rare in the body, however, so researchers must culture them in dishes.

While all cells run the risk of mutating when they divide, previous research from Loring and her colleagues suggested that stem cell culturing may select for mutations that favor faster cell growth and are sometimes associated with tumors.

“Most changes will not compromise the safety of the cells for therapy, but we need to monitor the cultures so that we know what sorts of changes take place,” said the paper’s first author Ibon Garitaonandia, a postdoctoral researcher working in Loring’s lab at the time of the study.

How to Reduce Mutations

See more here:
New study shows safer methods for stem cell culturing

Researchers Hone in on Stem Cell that Speeds Healing of Stubborn Diabetes Wounds

February 25th, 2015 by sScycdbt No comments »

Durham, NC (PRWEB) February 25, 2015

A new study published in the latest issue of STEM CELLS Translational Medicine reveals how a particular type of stem cell generated from fat tissue may outperform other types of stem cells in speeding up the healing of wounds caused by type 1 diabetes. In the study, ulcers in a mice model treated with these cells healed significantly faster than those treated with general types of stem cells.

Slow-healing wounds present one of the most common and perplexing complications associated with both type 1 and type 2 diabetes. If left untreated, they can lead to amputation, and even death. In fact, diabetes is the leading cause of non-traumatic lower limb amputation in the United States, according to the American Diabetes Association. Despite this, there are very few consistently effective treatments for speeding the wound-healing process in patients.

Addressing this issue, researchers at the University of Tokyo (UT) School of Medicine partnered with colleagues at the Research Center for Stem Cell Engineering, National Institute for Advanced Industrial Science and Technology (Ibaraki, Japan) to test whether a type of mesenchymal stem cell (MSC) called Muse, which is harvested from adult adipose tissue (that is, fat), might work better than other types of MSCs in treating diabetes wounds. Previous studies had shown that Muse which stands for multilineage differentiating stress-enduring cells do not have high proliferative activity, but they do generate multiple cell types of the three germ layers without inducing unfavorable tumors. Thus, Muse cells appear to be safer than other induced pluripotent or multipotent cells and might have better therapeutic potential than general (non-Muse) MSCs.

The study details how researchers isolated the Muse cells from human tissue and then injected them into skin ulcers in diabetic mice. Study leader Kotaro Yoshimura, M.D., of UTs Department of Plastic Surgery said that, After 14 days the mice treated with Muse-rich cells showed significantly accelerated wound healing compared to those treated with Muse-poor cells. The transplanted cells were integrated into the regenerated skin as vascular endothelial cells and other cells. However, they were not detected in the surrounding intact regions.

In fact, not only had the wounds of the mice treated with the Muse cells completely healed after the 14-day period, but the healed skin was thicker than that of the non-Muse treated wounds, too.

Were not sure yet why the Muse cells seem to work better, Dr. Yoshimura stated, but they expressed upregulated pluripotency markers and some angiogenic growth factors, and our animal results certainly suggest a clinical potential for them in the future. These cells can be achieved in large amounts with minimal morbidity and could be a practical tool for a variety of stem cell-depleted or ischemic conditions of various organs and tissues.

Fat tissue has been gaining attention as a practical source of adult stem cells, said Anthony Atala, M.D., Editor-in-Chief of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. This study suggests the future clinical potential for Muse cells.

###

The full article, Therapeutic Potential of Adipose-Derived SSEA-3-Positive Muse Cells for Treating Diabetic Skin Ulcers, can be accessed at http://www.stemcellstm.com.

More:
Researchers Hone in on Stem Cell that Speeds Healing of Stubborn Diabetes Wounds

Rowan Researcher Targets Stem Cell-Based Therapy for Rare Childhood Disease

February 25th, 2015 by TundPoniunk No comments »

Contact Information

Available for logged-in reporters only

Newswise STRATFORD Paola Leone, PhD, the director of the Cell and Gene Therapy Center and a professor of Cell Biology at the Rowan University School of Osteopathic Medicine (RowanSOM), has been awarded a three-year, $477,000 grant from the National Institute of Neurological Disorders and Stroke (NINDS) to develop a stem cell-based therapy for Canavan disease, a rare but devastating neurological disorder in children that typically takes a childs life by age 10.

Canavan disease is a fatal, inherited disease caused by a mutation in the aspartaocylase gene, Dr. Leone explained. The disease is characterized by progressive and severe brain atrophy that manifests in delayed development, developmental regression, microcephaly, spasticity, seizures, visual impairment and short life expectancy. There, currently, is no treatment or cure for Canavan disease.

Under Dr. Leones direction, a team of RowanSOM researchers and students will examine the potential of stem cells for the treatment of Canavan disease in an animal model. This new study will build on the research teams preliminary data that demonstrated the successful engraftment of stem cells in animal models.

Our project will generate pre-clinical data to support the development of a stem-cell based therapy for Canavan disease, Dr. Leone said. It will also provide an important opportunity for a new generation of clinical researchers. Both undergraduate and graduate students will participate in this project, providing them with valuable experience to work with an extremely promising therapeutic intervention.

The symptoms of Canavan disease usually appear within the first six months of a childs life. The disease is caused by a genetic mutation that stops cells, called oligodendrocytes, from developing myelin, the fatty substance that coats the nerves in the brain. Without the protective myelin covering, the nerves do not form properly, causing the brain to atrophy. The preliminary research that Dr. Leone conducted showed that the engraftment of stem cells promoted significant recovery of the myelin sheath surrounding the nerves.

Our research represents a significant departure from other studies that have focused solely on strategies to augment the loss of the aspartaocylase function that is highly reduced in the brains of these patients, Dr. Leone said. We believe that any strategy seeking to treat Canavan must include a way to restore the myelin development that is disrupted in children with this disease.

This research is supported by the NINDS of the National Institutes of Health, under grant number 1R15NS088763-01A1.

Journalists wishing to speak with Dr. Leone, should contact Jerry Carey, Rowan University Media and Public Relations at 856-566-6171 or at careyge@rowan.edu.

Read more here:
Rowan Researcher Targets Stem Cell-Based Therapy for Rare Childhood Disease

Woman swears by Multiple Sclerosis remedy

February 24th, 2015 by somaAstorma No comments »

IT IS expensive and controversial and the medical community is still divided about its success, but Jenni Saunders is living proof Russia’s controversial stem cell treatment program can work.

The Kawana Island resident spent 30 days in Moscow in December receiving stem cell treatment she hoped would help provide some relief from the multiple sclerosis that has been slowly crippling her body for 30 years.

It has been 10 weeks since Ms Saunders’ return and she is ecstatic with the results.

The 60-year-old can literally jump for joy.

It’s been “years” since Ms Saunders was able to lift both feet off the ground, so the small leap in the air is a giant leap for her.

“I have seen several improvements in the last nine to 10 weeks,” she said.

“The pins and needles in my hands and feet are virtually gone and I can stand up with my eyes closed.

“This might not sound like a lot to many people, but to me it is significant.”

She says she is the oldest Australian to have attempted the $60,000 treatment, excluding the cost of flights.

The stem cell treatment is not approved for MS sufferers in Australia and people like Ms Saunders have to raise money to pay for the trip, even though it is available in other parts of the world.

Read more here:
Woman swears by Multiple Sclerosis remedy

Stem cellrecruiting hydrogels based on self-assembling peptides for tissue regeneration

February 24th, 2015 by sandos76 No comments »

Figure 1. Stem CellRecruiting Hydrogels Based on Self-Assembling Peptides

The Materials for Biomaterials session Best Contribution Award presented by Steve Zinkle goes to Yongmee Jung, Korea Institute of Science and Technology, for the oral presentation Self-assembling peptide nanofiber coupled with neuropeptide substance P for stem cell recruitment.

As a winner of the above Materials Today Asia Contribution Award, Yongmee Jung and Soo Hyun Kim discuss their work with us.

Stem cellbased therapy in regenerative medicine may be one of the best approaches for wound healing and tissue regeneration. Many studies have shown that the trophic effects of transplanted stem cells enhance the treatment of lung, liver, and skin injuries, as well as myocardial infarction [1]. However, although stem cell transplantationincluding cell isolation and cell culture in vitroresults in a good prognosis, there are some limitations, such as high cost, invasiveness, the shortage of cell sources, and the risk of tumorigenesis [2]. To overcome these limitations, technologies for recruiting endogenous stem cells to the site of injury may provide another promising approach, mimicking in situ tissue regeneration by the bodys own wound healing process. Unlike cell-based therapies, this strategy does not need outside cell sources or in vitro cell manipulation. Host stem cells can be mobilized using granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), or stromal cellderived factor-1 alpha (SDF-1), each of which upregulates adhesion molecules and activates chemokine signaling [3]. It has been reported that substance P (SP), another candidate for recruitment of host stem cells, is an injury-inducible factor that acts early in the wound healing process to mobilize CD29+ stromal-like cells, and thus could be used for tissue regeneration [1].

To achieve effective delivery of SP for an extended period and improve the engraftment of recruited cells at the injured site, scaffolds can be constructed from hydrogels with microenvironments similar to the native tissue. Of particular interest are self-assembling peptide (SAP)based hydrogels, which are typically composed of alternating hydrophilic and hydrophobic amino acids organized into 510 nm fibers and assembled into three-dimensional nanofibrous structures under in vivo conditions [4]. The resulting structure resembles nanostructured environments such as collagen hierarchical structures that promote adhesion, proliferation, and differentiation of cells. Furthermore, SAP is versatile enough to incorporate specific motifs based on the desired function with chemical coupling by peptide bond [5].

Recently, we designed bioactive peptide hydrogels that are able to recruit mesenchymal stem cells by coupling SAP to SP. The mixture of SAP and SP-coupled SAP can successfully maintain its nanofibrous structure and be assembled into a 3D scaffold at physiological conditions.

We confirmed the ability of this SP-coupled SAP to attract stem cells both by in vitro cell migration assay and by in vivo real-time cell tracking assay. In vitro, many cells migrated through the 8-m membrane pores and settled onto the lower surfaces of Transwell plates under the influence of SP-coupled SAP. In vivo, we injected the hydrogels into the subcutaneous tissue in nude mice and injected labeled human mesenchymal stem cells (hMSCs) into the tail vein. The migration of the injected cells was tracked in real time using a multispectral imaging system, which demonstrated that the labeled hMSCs supplied via intravenous injection were recruited to the hydrogel-injected site (Figure) [6]. We then applied our bioactive peptide hydrogels, SAP coupled with SP, to several disease models to evaluate their stem cell recruitment abilities and treatment effects on injured tissues. We have studied the effects of these hydrogels on animal models of ischemic hind limb, calvarial defect, myocardial infarction, osteoarthritis, and skin wounds. We observed in each case that in the group treated with SP-coupled peptide hydrogels, many MSCs were recruited to the injured sites, and cell apoptosis and fibrosis of injured tissues were both conspicuously decreased. Moreover, the regeneration of site-specific tissues was enhanced with the injection of stem cellrecruiting peptide hydrogels in various defect models, and tissue functions were accordingly improved without cell transplantation [2, 5, 6]. In conclusion, we have developed injectable bioactive peptides that can recruit MSCs and have evaluated their therapeutic potential on animal defect models. By applying these peptide hydrogels, we were able to deliver SP over an extended period and provide 3D microenvironments to injured regions, allowing bioactive peptides to recruit MSCs successfully, prevent cell apoptosis, and promote tissue regeneration leading to a full recovery of defects. We expect that stem cellrecruiting hydrogels based on SAP could be one of the most powerful tools for tissue regeneration without cell transplantation through the recruitment of endogenous stem cells.

This work was supported by the KIST Institutional Program

1. H. S. Hong, et al., Nat. Med., 15 (2009), pp. 425435 2. J. H. Kim, et al., Biomaterials, 34 (2013), pp. 16571668 3. T. Lapidot, I. Petit, Exp. Hematol., 30 (2002), pp. 973981 4. S. Zhang, et al., Semin. Cancer Biol., 15 (5) (2005), pp. 413420 5. J. E. Kim, et al., Int. J. Nanomedicine, 9 (Suppl 1) (2014), pp. 141157 6. S. H. Kim, et al., Tissue Eng. Part A, E-Pub (2014)

Read more:
Stem cellrecruiting hydrogels based on self-assembling peptides for tissue regeneration

Stem Cell Therapy for Paralysis – Video

February 24th, 2015 by Wrororefsed No comments »



Stem Cell Therapy for Paralysis
Lakhwinder Singh was Paralysed, ever since his accident in 2007. After not having luck with conventional treatment, he decided to go with our Stem Cell Therapy. Post treatment, he has regained…

By: Reelabs

Go here to read the rest:
Stem Cell Therapy for Paralysis – Video

Global Stem Cells Group, Inc. Announces Launch of New Stem Cell Harvesting Products

February 24th, 2015 by gjvbupc No comments »

MIAMI (PRWEB) February 24, 2015

In answer to industry-wide requests for more accessible solutions to stem cell procedures, Global Stem Cells Group, Inc. and Regenestem have announced the launch of two new stem cell harvesting and isolation kits.

The Regenestem BMAC 60 mL concentrating system is a high performing concentrating system for bone marrow aspirate. This kit come complete with a bone marrow filter, a bone marrow aspirating needle and a locking syringe to help maintain suction during the aspirating process. The BMAC 60 kit includes bone marrow concentrate up to 11 times the baseline values, to produce 6-8 mL BMC from a 60 mL sample of bone marrow aspirate.

The Regenestem 60 mL Adipose Derived Stem Cell (ADSC) Kit System includes all the tools and consumables for the extraction of adipose-derived stem cells from 60 mL of lipoaspirated fat. The ADSC kit is currently being used in clinical procedures for lung disease, intra-articular injections for osteoarthritis of the knee and hip, cosmetic surgery and acne scarring, dermal injections, stem cell enriched fat transfer, wounds, chronic ulcers and other chronic conditions. The enzymatic component used to obtain the stromal vascular fraction (SVF) is provided by Adistem.

The Regenestem ADSC Kit System is available in three versions:

Gold, to conduct in-office stem cell procedures with certified GMP components for reliable performance.

Platinum, with all the benefits of the basic (gold) kit plus a sterilized PRP close system with vortex engineering method to minimize platelet loss. One set of individually packed Tulip Gems instruments are added for safe and precise adipose tissue extraction.

Titanium, the perfect state-of-the-art deluxe kit system used by a growing number of regenerative medicine physicians and recognized as the perfect preparation for virtually all clinical applications. Built with Emcyte technology, the Regenestem Titanium kit has been independently reviewed and proven in various critical performance points that make a difference in patient outcomes.

The Titanium kit is currently being used in topical procedures such as intra-articular injection for osteoarthritis of the knee and hip, cosmetic surgery and acne scarring, dermal injection, stem cell enriched fat transfer, wounds chronic ulcers among other chronic conditions.

According to Global Stem Cells Group CEO Benito Novas, the entire Global Stem Cells Group faculty and scientific advisory board worked together to develop the kits.

More:
Global Stem Cells Group, Inc. Announces Launch of New Stem Cell Harvesting Products

Stem Cell Research & Therapy | Full text | Aromatic …

February 24th, 2015 by FaKYPHSVmTZY No comments »

Abstract Introduction

Aromatic (ar-) turmerone is a major bioactive compound of the herb Curcuma longa. It has been suggested that ar-turmerone inhibits microglia activation, a property that may be useful in treating neurodegenerative disease. Furthermore, the effects of ar-turmerone on neural stem cells (NSCs) remain to be investigated.

We exposed primary fetal rat NSCs to various concentrations of ar-turmerone. Thereafter, cell proliferation and differentiation potential were assessed. In vivo, nave rats were treated with a single intracerebroventricular (i.c.v.) injection of ar-turmerone. Proliferative activity of endogenous NSCs was assessed in vivo, by using noninvasive positron emission tomography (PET) imaging and the tracer [18F]-fluoro-L-thymidine ([18F]FLT), as well as ex vivo.

In vitro, ar-turmerone increased dose-dependently the number of cultured NSCs, because of an increase in NSC proliferation (P

Both in vitro and in vivo data suggest that ar-turmerone induces NSC proliferation. Ar-turmerone thus constitutes a promising candidate to support regeneration in neurologic disease.

Curcumin and ar-turmerone are the major bioactive compounds of the herb Curcuma longa. Although many studies have demonstrated curcumin to possess antiinflammatory and neuroprotective properties (reviewed by [1]), to date, the effects of ar-turmerone remain to be elucidated. For example, antitumor properties, exerted via the induction of apoptosis [2] and inhibition of tumor cell invasion [3], have been attributed to ar-turmerone. Park et al. [4,5] recently suggested that ar-turmerone also possesses antiinflammatory properties resulting from the blockade of key signaling pathways in microglia. Because microglia activation is a hallmark of neuroinflammation and is associated with various neurologic disorders, including neurodegenerative diseases [6,7] and stroke [8,9], ar-turmerone constitutes a promising therapeutic agent for various neurologic disorders.

The regenerative potential of endogenous neural stem cells (NSCs) plays an important role in neurodegenerative disease and stroke. Endogenous NSCs are mobilized by cerebral ischemia [10] as well as by various neurodegenerative diseases [11,12], although their intrinsic regenerative response is insufficient to enable functional recovery. The targeted (that is, pharmacologic) activation of endogenous NSCs has been shown to enhance self-repair and recovery of function in the adult brain in both stroke [13,14] and neurodegeneration [15]. Importantly, NSCs and microglia relevantly interact with each other, thereby affecting their respective functions [16,17].

Thus, with the perspective of ar-turmerone as a therapeutic option in mind, we investigated the effects of ar-turmerone on NSCs in vitro and in vivo.

NSCs were cultured from fetal rat cortex at embryonic day 14.5, as described previously [18]. Cells were expanded as monolayer cultures in serum-free DMEM/F12 medium (Life Technologies, Darmstadt, Germany) with N2 supplement (Gibco, Karlsruhe, Germany) and fibroblast growth factor (FGF2; 10ng/ml; Invitrogen, Karlsruhe, Germany) for 5days and were replated in a 24-well plate at 10,000 cells per cm2. FGF2 was included throughout the experiments.

Ar-turmerone (Fluka, Munich, Germany) was added to cultures at replating at concentrations of 0, 1.56, 3.125, 6.25, 12.5, and 25g/ml. All experiments were performed in triplicate. After 72hours, representative pictures were taken by using an inverted fluorescence phase-contrast microscope (Keyence BZ-9000E). Three images were taken per well, and cells were counted by using the software ImageJ with a threshold of 20 px (National Institutes of Health, Bethesda, MD, USA, Version 1.47k).

See the article here:
Stem Cell Research & Therapy | Full text | Aromatic …

Why Stem Cell Therapy? – Video

February 22nd, 2015 by fortifiedgeniusbvc No comments »



Why Stem Cell Therapy?
Dr. Bryn J. Henderson (DO, JD, FACPE, CIME) is visionary physician executive leading RMG. In this amazing education video, he is explaning clearly why patients should choose Stem Cell Therapy…

By: iManifestart

Read more:
Why Stem Cell Therapy? – Video

Stem Cell Therapy for Liver Failure Cirrhosis Kidney Damage – 6 Months After Stemcell Transplant – Video

February 21st, 2015 by BogBaixsisa No comments »



Stem Cell Therapy for Liver Failure Cirrhosis Kidney Damage – 6 Months After Stemcell Transplant
Bruce from Perth Australia give us an update 6 Months After his cord Mesenchymal stem cell treatment for Iiver cirrhosis, kidney complications in Thailand: More here: http://stemcellthailand.org/th…

By: Regeneration Center of Thailand

Continue reading here:
Stem Cell Therapy for Liver Failure Cirrhosis Kidney Damage – 6 Months After Stemcell Transplant – Video

Stem Cell Therapy Using Fat Cells – Howard Beach, Ozone Park, Queens NY – Dr. Benjamin Bieber, MD – Video

February 20th, 2015 by Unammandy No comments »



Stem Cell Therapy Using Fat Cells – Howard Beach, Ozone Park, Queens NY – Dr. Benjamin Bieber, MD
Regenerative Medicine – Dr. Benjamin Bieber, MD – Howard Beach, Ozone Park, Queens NY http://www.crossbaypmr.com Phone: (718) 835-0100 Stem Cell Therapy Using Fat Cells Dr. Benjamin…

By: wpv wpvmedia

View post:
Stem Cell Therapy Using Fat Cells – Howard Beach, Ozone Park, Queens NY – Dr. Benjamin Bieber, MD – Video

What is Bone Marrow Aspirate Concentrate (BMAC) in Stem Cell Therapy? – Video

February 20th, 2015 by enmetkore78 No comments »



What is Bone Marrow Aspirate Concentrate (BMAC) in Stem Cell Therapy?
Dr. McKenna explains bone marrow aspirate concentrate (BMAC). BMAC contains stem cells and growth factors that can build blood supply and heal tissue. For more information: http://www.rmiclinic.com…

By: Riordan-McKenna Institute

Read the original here:
What is Bone Marrow Aspirate Concentrate (BMAC) in Stem Cell Therapy? – Video

Ryan Benton Discusses Stem Cell Therapy for Duchenne’s Muscular Dystrophy – Video

February 20th, 2015 by hoodiamzigog No comments »



Ryan Benton Discusses Stem Cell Therapy for Duchenne's Muscular Dystrophy
Ryan Benton is the first patient in the United States to receive human umbilical cord-derived mesenchymal stem cell therapy for Duchenne's muscular dystrophy. The US FDA granted Ryan this…

By: http://www.cellmedicine.com

Read this article:
Ryan Benton Discusses Stem Cell Therapy for Duchenne’s Muscular Dystrophy – Video

Stem Cell Therapy Using Bone Marrow – Howard Beach, Ozone Park, Queens NY – Dr. Benjamin Bieber, MD – Video

February 20th, 2015 by RachealyBognosianqq No comments »



Stem Cell Therapy Using Bone Marrow – Howard Beach, Ozone Park, Queens NY – Dr. Benjamin Bieber, MD
http://www.crossbaypmr.com Stem Cell Therapy Using Bone Marrow – Howard Beach, Ozone Park, Queens NY – Dr. Benjamin Bieber, MD – Regenerative Medicine Phone:…

By: wpv wpvmedia

Go here to read the rest:
Stem Cell Therapy Using Bone Marrow – Howard Beach, Ozone Park, Queens NY – Dr. Benjamin Bieber, MD – Video

Treating Pain with ADULT STEM CELL THERAPY – The STEM CELL ORTHOPEDIC INSTITUTE of Texas – Video

February 18th, 2015 by xbgbmw No comments »



Treating Pain with ADULT STEM CELL THERAPY – The STEM CELL ORTHOPEDIC INSTITUTE of Texas
Dr. David Hirsch D.O. of The STEM CELL ORTHOPEDIC INSTITUTE of Texas presents an overview STEM CELL therapy.

By: David Hirsch

Read the rest here:
Treating Pain with ADULT STEM CELL THERAPY – The STEM CELL ORTHOPEDIC INSTITUTE of Texas – Video

Dr Ellis hosts seminar on Stem Cell Therapy & Facial Rejuvenation – Video

February 18th, 2015 by Lerrietramutt No comments »



Dr Ellis hosts seminar on Stem Cell Therapy Facial Rejuvenation
Dr. Dan Eglinton of Asheville Biologics and Orthopaedics, Dr. Sean Whalen and Dr. Paul Mogannam of Flexogenics and Dr. Laura Ellis of medAge speak about Stem Cell Therapy and skin …

By: Dr. Laura Ellis

See original here:
Dr Ellis hosts seminar on Stem Cell Therapy & Facial Rejuvenation – Video